Creating non-reversible rejection-free samplers by rebalancing skew-balanced Markov jump processes
Ruben Seyer (Chalmers University of Technology & University of Gothenburg)
Abstract: Markov chain sampling methods form the backbone of modern computational statistics. However, many popular methods are prone to random walk behavior, i.e., diffusion-like exploration of the sample space, leading to slow mixing that requires intricate tuning to alleviate. Non-reversible samplers can resolve some of these issues. We introduce a device that turns jump processes that satisfy a skew-detailed balance condition for a reference measure into a process that samples a target measure that is absolutely continuous with respect to the reference measure. The resulting sampler is rejection-free, non-reversible, and continuous-time. As an example, we apply the device to Hamiltonian dynamics discretized by the leapfrog integrator, resulting in a rejection-free non-reversible continuous-time version of Hamiltonian Monte Carlo (HMC). We prove the geometric ergodicity of the resulting sampler under certain convexity conditions, and demonstrate its qualitatively different behavior to HMC through numerical examples.
machine learningprobabilitystatistics theory
Audience: researchers in the discipline
( paper )
Series comments: Gothenburg statistics seminar is open to the interested public, everybody is welcome. It usually takes place in MVL14 (http://maps.chalmers.se/#05137ad7-4d34-45e2-9d14-7f970517e2b60, see specific talk). Speakers are asked to prepare material for 35 minutes excluding questions from the audience.
| Organizers: | Akash Sharma*, Helga Kristín Ólafsdóttir* |
| *contact for this listing |
